In Silico Analysis of Honeybee Venom Protein Interaction with Wild Type and Mutant (A82V + P375S) Ebola Virus Spike Protein
Show Abstract
Abstract
Venom from different organisms was used in ancient times to treat a wide range of diseases, and to combat a variety of enveloped and non-enveloped viruses. The aim of this in silico research was to investigate the impact of honeybee venom proteins and peptides against Ebola virus. In the current in silico study, different online and offline tools were used. RaptorX (protein 3D modeling) and PatchDock (protein–protein docking) were used as online tools, while Chimera and LigPlot + v2.1 were used for visualizing protein–protein interactions. We screened nine venom proteins and peptides against the normal Ebola virus spike protein and found that melittin, MCD and phospholipase A2 showed a strong interaction. We then screened these peptides and proteins against mutated strains of Ebola virus and found that the enzyme phospholipase A2 showed a strong interaction. According to the findings, phospholipase A2 found in honeybee venom may be an effective source of antiviral therapy against the deadly Ebola virus. Although the antiviral potency of phospholipase A2 has been recorded previously, this is the first in silico analysis of honeybee phospholipase A2 against the Ebola viral spike protein and its more lethal mutant strain.
|
Muhammad Muzammal,
Muzammil Ahmad Khan,
Arshad Farid,
Mohammed Al Mohaini,
Abdulkhaliq J. Alsalman,
Maitham A. Al Hawaj,
|
0 |
Download Full Paper |
0 |
The Promising Role of Mushrooms as a Therapeutic Adjuvant of Conventional Cancer Therapies
Show Abstract
Abstract
Complementary and alternative medicine (CAM) has been fronted as an alternative due to its potential for holistic treatment. Many CAMs are plant-derived, including algae and mushrooms that have been used widely in many parts of the world, where they are regarded as biological response modifiers. The purpose of this article was to review the role of mushrooms as an adjuvant in conventional therapies, to reveal the therapeutic substances of mushrooms as an adjuvant in conventional therapies, to bring together the available scientific data on the medical effects of mushrooms in oncology, and verify its efficacy and safety. A literature search was conducted in September 2021 on the MEDLINE-PubMed and Cochrane databases to identify relevant randomized controlled trials or clinical trials studies addressing the use of whole mushroom formulations as complementary therapy during conventional cancer treatment.: The findings from the present study suggest that mushrooms may act as a potentiator of host defense mechanisms and decrease adverse events for patients with cancer undergoing conventional therapies. New protocols to conduct clinical trials are needed to elucidate the possible active mechanisms and clinical benefits of these fungi in various types of cancer.
|
Ana Isabel Plácido,
Fátima Roque,
Manuel Morgado,
|
0 |
Download Full Paper |
0 |
Toxicity Studies on Essential Oil from Phoenix dactylifera (L.) Seed in Wistar Rats
Show Abstract
Abstract
This study evaluated the toxicological effect of oral administration of Phoenix dactylifera seed essential oil (PDEO) in Wistar rats. PDEO was extracted through a steam-distillation technique. Acute toxicity study evaluated administration of a single dose of the oil in a group (n = 5) of rats followed by 24 h observation, for sub-acute toxicity evaluation, the animals were randomly divided into five groups (n = 3). Group 1 to 4 rats, respectively, received 62.5, 125, 250, and 500 mg/kg bw of PDEO for fourteen days, while the fifth group served as control. At the termination of the study,
blood samples were obtained for biochemical and hematological analyses, while vital organs were histopathologically examined. Results from this study revealed no mortality or abnormal behavioral changes in the animals. A dose-related increase in bodyweight and hematological parameters was observed across the treated groups (p < 0.05). At a dosage of 500 mg/kg bw, PDEO caused slight elevation in biochemical marker levels and mild changes in histological architecture of liver and kidney of the test rats. This study revealed that PDEO exhibited significant hematopoietic attributes with no adverse effect on the experimental rats’ vital organs at concentrations below 500 mg/kg bw.
|
Olumide Oluyele,
Muftau Kolawole Oladunmoye,
Ayodele Oluwayemisi Ogundare,
|
0 |
Download Full Paper |
0 |
High Altitude Cerebral Edema: Improving Treatment Options
Show Abstract
Abstract
High altitude illness in its most severe form can lead to high altitude cerebral edema (HACE). Current strategies have focused on prevention with graduated ascents, pharmacologic prophylaxis, and descent at first signs of symptoms. Little is understood regarding treatment with steroids and oxygenation being commonly utilized. Pre-clinical studies with turmeric derivatives have offered promise due to its anti-inflammatory and antioxidant properties, but they warrant validation clinically. Ongoing work is focused on better understanding the disease pathophysiology with an emphasis on the glymphatic system and venous outflow obstruction. This review highlights what is known regarding diagnosis, treatment, and prevention, while also introducing novel pathophysiology mechanisms warranting further investigation.
|
Rebecca Zelmanovich,
Kevin Pierre,
Patrick Felisma,
Dwayne Cole,
Matthew Goldman,
Brandon Lucke Wold,
|
0 |
Download Full Paper |
0 |
Therapeutic Role of Antimicrobial Peptides in Diabetes Mellitus
Show Abstract
Abstract
Antimicrobial peptides (AMPs) have recently become widely publicized because they have the potential to function in alternative therapies as “natural” antibiotics, with their main advantage being a broad spectrum of activity. The potential for antimicrobial peptides to treat diabetes mellitus (DM) has been reported. In diabetes mellitus type I (T1D), cathelicidin-related antimicrobial peptide (CRAMP), cathelicidin antimicrobial peptide (CAMP) and mouse-β- defensin
14 (mBD14) are positively affected. Decreased levels of LL-37 and human neutrophil peptide 1-3 (HNP1-3) have been reported in diabetes mellitus type II (T2D) relative to healthy patients. Moreover, AMPs from amphibians and social wasps have antidiabetic effects. In infections occurring in patients with tuberculosis-diabetes or diabetic foot, granulysin, HNP1, HNP2, HNP3, human beta-defensin 2 (HBD2), and cathelicidins are responsible for pathogen clearance. An interesting alternative is also the use of modified M13 bacteriophages containing encapsulated AMPs genes or phagemids.
|
Julia Depta,
Monika Wysokinska,
Karolina Todorska,
Rafał Hrynkiewicz,
Dominika Bebnowska,
Paulina Nied ´zwiedzka Rystwej,
Paulina Małkowska,
Olga Sierawska,
|
0 |
Download Full Paper |
0 |
The Coming of Age of Biosimilars: A Personal Perspective
Show Abstract
Abstract
Biosimilars have come of age over the past 17 years, with 84 approvals in the EU and 35 in the US, representing almost 90% of the world market. While the acceptance of biosimilars in the US is catching up with that in the EU, the cost benefits remain elusive due to the high development barrier and complex distribution system involved, mainly in the US. In the EU, the cost of biosimilars has already dropped 70% or more, and interchangeability is a routine in some European jurisdictions, unlike in the US, where a separate regulatory approval is required. This paper projects significant changes coming in the US and EU’s biosimilars approval requirements that will impact the approval
procedures in the rest of the world, leading to dramatic changes in the cost of biosimilars to patients. This perspective is based on the author’s first-hand experience to secure FDA approvals of biosimilars and an extensive analysis of the rationality of testing to demonstrate biosimilarity. Multiple citizen petitions by the author and meetings with the FDA may have prompted the recent announcement by the FDA to award a $5 million research grant to scientists to develop novel testing models to establish biosimilarity, including modifying the interchangeability protocols. Soon, demonstration of bio similarity will not require animal testing and, in most cases, clinical efficacy testing; over time, the
clinical pharmacology testing will be reduced as the regulatory agencies develop more confidence in the safety and efficacy of biosimilars. Biosimilars have come of age; now it is the turn of the developers to grow up, and one way to show this is to challenge the current regulatory guidelines but only on scientific grounds to seek more concessions, for which both FDA and EMA are ready.
|
Sarfaraz K. Niazi,
|
0 |
Download Full Paper |
0 |