Solar Photovoltaic System-Based Reduced Switch Multilevel Inverter for Improved Power Quality
Show Abstract
Abstract
This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.
|
Madhu Andela,
Ahmmadhussain Shaik,
Saicharan Beemagoni,
Vishal Kurimilla,
Rajagopal Veramalla,
Amritha Kodakkal,
Surender Reddy Salkuti,
|
0 |
Download Full Paper |
0 |
Techno-Economic Analysis and Modelling of the Feasibility of Wind Energy in Kuwait
Show Abstract
Abstract
There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on a techno-economic analysis of the feasibility of implementing wind power generation in Kuwait for 105 MW of electricity generation based on 50 wind turbines, which is a major requirement for clean energy. The study focused on three main areas of analysis and numerical modelling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analysing, and modelling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact report to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to determine the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modelling process. The results were used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of US $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million t of carbon dioxide per year, thereby saving about $9 million over 20 years spent through installing carbon capture systems for conventional power plants. The wind farm is estimated to have a payback time of 9.1 years.
|
Ali M. H. A. Khajah,
Simon P. Philbin,
|
0 |
Download Full Paper |
0 |
Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems
Show Abstract
Abstract
Global warming and climate change are imminent threats to the future of humankind. A shift from the current reliance on fossil fuels to renewable energy is key to mitigating the impacts of climate change. Biological raw materials and residues can play a key role in this transition through technologies such as anaerobic digestion. However, biological raw materials must also meet other existing food, feed and material needs. Green biorefinery is an innovative concept in which green biomass, such as grass, is processed to obtain a variety of protein products, value-added co-products and renewable energy, helping to meet many needs from a single source. In this study, an analysis has been conducted to understand the renewable energy potential of green biorefinery by-products
and residues, including grass whey, de-FOS whey and press cake. Using anaerobic digestion, the biogas and biomethane potential of these samples have been analyzed. An analysis of the fertiliser potential of the resulting digestate by-products has also been undertaken. All the feedstocks tested were found to be suitable for biogas production with grass whey, the most suitable candidate with a biogas and biomethane production yield of 895.8 and 544.6 L/kg VS, respectively, followed by de-FOS whey and press cake (597.4/520.3 L/kg VS and 510.7/300.3 L/kg VS, respectively). The results show considerable potential for utilizing biorefinery by-products as a source for renewable energy production, even after several value-added products have been co-produced.
|
Rajeev Ravindran,
Abhay Menon,
Amita Jacob Guneratnam,
Helena McMahon,
James Gaffey,
Kwame Donkor,
Lalitha Gottumukkala,
Sybrandus Koopmans,
Johan P. M. Sanders,
|
0 |
Download Full Paper |
0 |
Encapsulated EVOO Improves Food Safety and Shelf Life of Refrigerated Pre-Cooked Chicken Nuggets
Show Abstract
Abstract
Background: New clean technologies are needed to reduce the high frying oil waste in the food industry of fried breaded products, together with the obtention of healthier (less fat content) and safer (less microbial growth and acrylamide formation) breaded products; (2) Methods: This study proposes the new technology consisting of incorporation of encapsulated extra virgin olive oil (EVOO) (α-cyclodextrin: EVOO ratio, 1:2.6) in the breadcrumbs (corn breadcrumbs:encapsulated oil ratio, 2:1) for breading chicken nuggets combined with oil-free pre-cooking (baking 150 ◦C/5 min) and cooking (baking 180 ◦C/13 min). As controls, a conventional deep-fat frying (180 ◦C/30 s)
and new technology but without encapsulated EVOO were used; (3) Results: Fat content of baked chicken nuggets with the new technology was reduced by 88%, while no sensory differences were scored compared with conventional deep-fat frying. Furthermore, acrylamide formation was reduced by >55% with the new technology. During storage (4 ◦C) of pre-cooked chicken nuggets of new technology, microbial growth was reduced by 1.4 log units lower compared with deep-fat frying method; (4) Conclusions: the proposed new technology, based on encapsulated EVOO+oil-free
pre-cooking/cooking, allows to obtain chicken nuggets that are healthier, safer, and have a longer shelf-life, while frying oil waste is avoided.
|
Marta Barón Yusty,
María Ros Chumillas,
Laura Navarro Segura,
Antonio López Gómez,
Ginés Benito Martínez Hernández,
|
2022 |
Download Full Paper |
0 |
A Social Exploration of the West Australian Gorgon Gas, Carbon Capture and Storage Project
Show Abstract
Abstract
Carbon capture and storage (CCS) appears to be essential for lowering emissions during the necessary energy transition. However, in Australia, it has not delivered this result, at any useful scale, and this needs explanation. To investigate the reasons for this failure, the paper undertakes a historical and social case study of the Gorgon gas project in Western Australia, which is often declared to be one of the biggest CCS projects in the world. The Gorgon project could be expected to succeed, as it has the backing of government, a practical and economic reason for removing CO2,a history of previous exploration, nearby storage sites, experienced operators and managers, and
long-term taxpayer liability for problems. However, it has run late, failed to meet its targets, and not lowered net emissions. The paper explores the social factors which seem to be disrupting the process. These factors include the commercial imperatives of the operation, the lack of incentives, the complexity of the process, the presence of ignored routine problems, geological issues (even in a well-explored area), technical failures, regulatory threats even if minor, tax issues, and the project increasing emissions and consuming carbon budgets despite claims otherwise. The results of this case study suggest that CCS may work in theory, but not well enough under some contemporary forms
of social organisation, and the possibilities of CCS cannot be separated from its social background.Social dynamics should be included in CCS projections to enhance the accuracy of expectations.
|
Jonathan Paul Marshall,
|
2022 |
Download Full Paper |
0 |
Integration of Solar Process Heat in Industries: A Review
Show Abstract
Abstract
Industrial manufacturing approaches are associated with processing materials that consume a significant amount of thermal energy, termed as industrial process heat. Industrial sectors consume a substantial amount of energy for process heating over a wide range of temperatures (up to 400 ◦C) from agriculture, HVAC to power plants. However, the intensive industrial application of fossil fuels causes unfavorable environmental effects that cannot be ignored. To address this issue, green energy sources have manifested their potential as economical and pollution-free energy sources. Nevertheless, the adoption of solar industrial process heating systems is still limited due to a lack of
knowledge in the design/installation aspects, reluctance to experience the technical/infrastructural changes, low price of fossil fuels, and lack of relative incentives. For successful solar process heat integration in industries, a proper understanding of the associated design factors is essential. This paper comprehensively reviews the integration strategies of solar industrial process heating systems, appraisal of the integration points, different aspects of solar collectors, installed thermal power, and thermal storage volume covering case studies, reports and reviews. The integration aspects of solar process heat, findings, and obstacles of several projects from the literature are also highlighted. Finally, the integration locations of SHIP systems are compared for different industrial sectors to find
out the most used integration point for a certain sector and operation. It was found that for the food, beverage, and agriculture sector, 51% of solar process heat integration occurs at the supply level and27.3% at the process-level.
|
Nahin Tasmin,
Md Rashed Hossain,
Santu Golder,
Shahjadi Hisan Farjana,
M. A. Parvez Mahmud,
|
2022 |
Download Full Paper |
0 |
Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment
Show Abstract
Abstract
A larger adoption of hydrogen fuel-cell electric vehicles (FCEVs) is typically included in the strategies to decarbonize the transportation sector. This inclusion is supported by life-cycle assessments (LCAs), which show the potential greenhouse gas (GHG) emission benefit of replacing internal combustion engine vehicles with their fuel cell counterpart. However, the literature review performed in this study shows that the effects of durability and performance losses of fuel cells on the life-cycle environmental impact of the vehicle have rarely been assessed. Most of the LCAs assume a constant fuel consumption (ranging from 0.58 to 1.15 kgH2/100 km) for the vehicles throughout their service life, which ranges in the assessments from 120,000 to 225,000 km. In this study, the effect of performance losses on the life-cycle GHG emissions of the vehicles was assessed based on laboratory experiments. Losses have the effect of increasing the life-cycle GHG emissions of the vehicle up to 13%. Moreover, this study attempted for the first time to investigate via laboratory analyses the GHG implications of replacing the hydrophobic polymer for the gas diffusion medium (GDM) of fuel cells to increase their durability. LCA showed that when the service life of the vehicle was fixed at 150,000 km, the GHG emission savings of using an FC with lower performance losses (i.e., FC coated with fluorinated ethylene propylene (FEP) instead of polytetrafluoroethylene (PTFE)) are negligible compared to the overall life-cycle impact of the vehicle. Both the GDM coating and the amount of hydrogen saved account for less than 2% of the GHG emissions arising during vehicle operation. On the other hand, when the service life of the vehicle depends on the operability of the fuel cell, the global warming potential per driven km of the FEP-based FCEV reduces by 7 to 32%. The range of results depends on several variables, such as the GHG emissions from hydrogen production and theinitial fuel consumption of the vehicle. Higher GHG savings are expected from an FC vehicle with high consumption of hydrogen produced with fossil fuels. Based on the results, we recommend the inclusion of fuel-cell durability in future LCAs of FCEVs. We also advocate for more research on the real-life performance of fuel cells employing alternative materials.
|
Alessandro Arrigoni,
Valeria Arosio,
Andrea Basso Peressut,
Saverio Latorrata,
Giovanni Dotelli,
|
2022 |
Download Full Paper |
0 |
Application of Machine Learning to Accelerate Gas Condensate Reservoir Simulation
Show Abstract
Abstract
According to the roadmap toward clean energy, natural gas has been pronounced as the perfect transition fuel. Unlike usual dry gas reservoirs, gas condensates yield liquid which remains trapped in reservoir pores due to high capillarity, leading to the loss of an economically valuable product. To compensate, the gas produced on the surface is stripped from its heavy components and reinjected back to the reservoir as dry gas thus causing revaporization of the trapped condensate. To optimize this gas recycling process compositional reservoir simulation is utilized, which, however,
takes very long to complete due to the complexity of the governing differential equations implicated. The calculations determining the prevailing k-values at every grid block and at each time step account for a great part of total CPU time. In this work machine learning (ML) is employed to accelerate thermodynamic calculations by providing the prevailing k-values in a tiny fraction of the time required by conventional methods. Regression tools such as artificial neural networks (ANNs) are trained against k-values that have been obtained beforehand by running sample simulations on small domains. Subsequently, the trained regression tools are embedded in the simulators acting thus as proxy models. The prediction error achieved is shown to be negligible for the needs of a real-world gas condensate reservoir simulation. The CPU time gain is at least one order of magnitude, thus rendering the proposed approach as yet another successful step toward the implementation of ML in the clean energy field.
|
Anna Samnioti,
Vassiliki Anastasiadou,
Vassilis Gaganis,
|
2022 |
Download Full Paper |
0 |
The Energy Efficiency Post-COVID-19 in China’s Office Buildings
Show Abstract
Abstract
China promptly took the leading step to mitigate the spread of COVID-19, producing the first scientific guidelines assuming health above energy consumption and significantly changing HVAC/AHU operation. The research intended to fulfill the gap by measuring the impact of the guidelines on energy use intensity, CO2 emissions, and energy operation costs related to workplaces. The guidelines are long-term sector and industry trends following occupants’ health and safety concerns, and today they are applied to nursing homes. The research extended the study to postCOVID-19 scenarios by crossing those settings with published reports on telework predictions. The methodology resorts to Building Energy Simulation software to assess the Chinese standard large office building on 8 climate zones and 17 subzones between pre- and post-COVID-19 scenarios under those guidelines. The outcomes suggest an upward trend in energy use intensity (11.70–12.46%), CO2 emissions (11.13–11.76%), and costs (9.37–9.89%) for buildings located in “warm/mixed” to “subarctic” climates, especially in colder regions with high heating demands. On the other hand, the figures for “very hot” to “hot/warm” climates lower the energy use intensity (14.76–15.47%), CO2
emissions (9%), and costs (9.64–9.77%).
|
Carlos C. Duarte,
Nuno D. Cortiços,
|
2022 |
Download Full Paper |
0 |
Convenient Synthesis of Triphenylphosphine Sulfide from Sulfur and Triphenylphosphine
Show Abstract
Abstract
Elemental sulfur (S8) was found to react very rapidly (<1 min) with a stoichiometric amount of triphenylphosphine at rt in sufficient amount of solvent (0.2–0.5 mL of solvent/1 mmol of PPh3).Compared to the previously described methods, the present procedure constitute excellent access to triphenylphosphine sulfide.
|
Thanh Binh Nguyen,
|
2022 |
Download Full Paper |
0 |
Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach
Show Abstract
Abstract
To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2
-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function
of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment.
|
Anja Pfennig,
Axel Kranzmann,
|
2022 |
Download Full Paper |
0 |
Modeling of Vacuum Temperature Swing Adsorption for Direct Air Capture Using Aspen Adsorption
Show Abstract
Abstract
The paper evaluates the performance of an adsorption-based technology for CO2 capture directly from the air at the industrial scale. The approach is based on detailed mass and energy balance dynamic modeling of the vacuum temperature swing adsorption (VTSA) process in Aspen Adsorption software. The first step of the approach aims to validate the modeling thanks to published experimental data for a lab-scale bed module in terms of mass transfer and energy performance on a packed bed using amine-functionalized material. A parametric study on the main operating
conditions, i.e., air velocity, air relative moisture, air temperature, and CO2 capture rate, is undertaken to assess the global performance and energy consumption. A method of up-scaling the lab-scale bed module to industrial module is exposed and mass transfer and energy performances of the industrial module are provided. The scale up from lab scale to the industrial size is conservative in terms of thermal energy consumption while the electrical consumption is very sensitive to the bed design. Further study related to the engineering solutions available to reach high global gas velocity are required. This could be offered by monolith-shape adsorbents.
|
Mohamed Kanniche,
Laurent Grandjean,
Olivier Authier,
Thomas Deschamps,
|
2022 |
Download Full Paper |
0 |
Clean Technologies for Production of Valuable Fractions from Sardine Cooking Wastewaters: An Integrated Process of Flocculation and Reverse Osmosis
Show Abstract
Abstract
The increase in environmental consciousness and stricter regulations has motivated industries to seek sustainable technologies that allow valorising wastewaters, contributing to the profitability of overall processes. Canning industry effluents, namely sardine cooking wastewater, have a high organic matter load, containing proteins and lipids. Their untreated discharge has a negative environmental impact and an economic cost. This work aims to design an integrated process that creates value with the costly sardine cooking wastewater effluent. The research strategy
followed evaluates coagulation/flocculation technologies as pre-treatment of the sardine cooking wastewater followed by reverse osmosis. Two different added-value products were obtained: a solid fraction rich in proteins, lipids (above 20%), and aromas that might be used for feed/pet/aquaculture applications and, from the processing of the resultant aqueous stream by reverse osmosis, a natural flavouring additive, which can be applied in food/feed. Additionally, the permeate from reverse osmosis presents a much lower organic load than the original raw material, which may be reused in the overall process (e.g., as water for washings) or discharged at a lower cost, with environmental
benefits and economic savings.
|
Maria João Pereira,
Carla Brazinha,
João Crespo,
Oceane Grosjean,
Manuela Pintado,
|
2022 |
Download Full Paper |
0 |
Sorption of 71 Pharmaceuticals to Powder Activated Carbon for Improved Wastewater Treatment
Show Abstract
Abstract
In this study, sorption distribution coefficients were determined for 71 pharmaceuticals ,aiming to describe their sorption behavior to powder activated carbon (PAC). The data are expected to be applied when designing and upgrading wastewater treatment plants (WWTP) for improved removal of pharmaceuticals by applying sorption to PAC as an additional removal technique. Sorption isotherms were determined for the pharmaceuticals over a concentration interval covering a wide range from 0.08 to 10 µg/L using PAC at a concentration of 10 mg/L. The best fitted sorption isotherms were used to calculate the distribution coefficients (Kd) and these were applied to estimate that the
PAC doses needed to achieve a target concentration of 10 ng/L in the effluent. A target concentration was used since neither discharge limit values nor environmental quality standards in general have been defined for these compounds. Using a %-removal approach does not guarantee achievement of concentrations low enough to protect the water ecosystems. Some of the pharmaceuticals will be reduced by the addition of small amounts of PAC. Examples are atenolol, carbamazepine, citalopram, codeine, fluoxetine and ibuprofen. For others, e.g., oxazepam, an alternative treatment has to be considered since the requested dose is too high to be realistic for a target concentration of 10 ng/L.
|
Jes la Cour Jansen,
Anna Ledin,
Maritha Hörsing,
Roman Grabic,
|
2022 |
Download Full Paper |
0 |
Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
Show Abstract
Abstract
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil, as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR), C-SR with CO2 capture (C-SR-CCS), and sorption enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C),temperature, pressure, the use of hydro desulphurisation pretreatment, and plant production capacity were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or SE-CLSR may be feasible routes to hydrogen production, with potential to provide negative emissions. SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam to carbon ratio (S/C) of 2, the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon avoided are less than those of a C-SR process with amine-based CCS. However, at higher S/C ratios, SE-CLSR does not have a strong economic advantage, and there is a need to better understand the viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g., 2),and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.
|
Jennifer Reeve,
Oliver Grasham,
Tariq Mahmud,
Valerie Dupont,
|
2022 |
Download Full Paper |
0 |
Thermal Investigation of a Turbocharger Using IR Thermography
Show Abstract
Abstract
An experimental thermal survey of a turbocharger was performed in an engine test cell using IR thermography. The emissivity coefficients of housings were specified using a furnace and camera. It was shown that the emissivity of the turbine, compressor, and bearing housings are 0.92, 0.65, and 0.74, respectively. In addition, thermocouples were mounted on the housing to validate the temperature of the thermal camera while running in an engine test cell. To compare the data of the thermocouple with data from the thermal camera, an image was taken from the sensor’s location on the housing. The experimental results show that the temperature prediction of the thermal camera has
less than 1 percent error. Steady-state tests at various working points and unsteady tests including warm-up and cool-down were performed. The measurements indicate that the turbine casing’s maximum temperature is 839 ◦C. Furthermore, a thermal image of the bearing housing shows that the area’s average temperature, which is close to the turbine housing, is 7 ◦C lower than the area close to the compressor housing. The temperature of the bearing housing near the turbine side should be higher; however, the effect of the water passing through the bearing housing decreases the temperature.
|
Hamed Basir,
Shahab Alaviyoun,
Marc A. Rosen,
|
2022 |
Download Full Paper |
0 |
Green Hydrogen in the UK: Progress and Prospects
Show Abstract
Abstract
Green hydrogen has been known in the UK since Robert Boyle described flammable air in 1671. This paper describes how green hydrogen has become a new priority for the UK in 2021, beginning to replace fossil hydrogen production exceeding 1 Mte in 2021 when the British Government started to inject significant funding into green hydrogen sources, though much less than the USA, Germany, Japan and China. Recent progress in the UK was initiated in 2008 when the first UK green hydrogen station opened in Birmingham University, refuelling 5 hydrogen fuel cell battery electric vehicles (HFCBEVs) for the 50 PhD chemical engineering students that arrived in 2009. Only 10 kg/day were required, in contrast to the first large, green ITM power station delivering almost 600 kg/day of green hydrogen that opened in the UK, in Tyseley, in July 2021. The first question asked in this paper is: ‘What do you mean, Green?’. Then, the Clean Air Zone (CAZ) in Birmingham is described, with the key innovations defined. Progress in UK green hydrogen and fuel cell introduction is then recounted. The remarks of Elon Musk about this ‘Fool Cell; Mind bogglingly
stupid’ technology are analysed to show that he is incorrect. The immediate deployment of green hydrogen stations around the UK has been planned. Another century may be needed to make green hydrogen dominant across the country, yet we will be on the correct path, once a profitable supply chain is established in 2022.
|
Kevin Kendall,
|
2022 |
Download Full Paper |
0 |