Kenaf Fibre Reinforced Cementitious Composites
Show Abstract
Abstract
Increased environmental awareness and the demand for sustainable materials have promoted the use of more renewable and eco-friendly resources like natural fibre as reinforcement in the building industry. Among various types of natural fibres, kenaf has been widely planted in the past few years, however, it hasn’t been extensively used as a construction material. Kenaf bast fibre is a high tensile strength fibre, lightweight and cost-effective, offering a potential alternative for reinforcement in construction applications. To encourage its use, it’s essential to understand how
kenaf fibre’s properties affect the performance of cement-based composites. Hence, the effects of KF on the properties of cementitious composites in the fresh and hardened states have been discussed. The current state-of-art of Kenaf Fibre Reinforced Cement Composite (KFRCC) and its different applications are presented for the reader to explore. This review confirmed the improvement of tensile and flexural strengths of cementitious composites with the inclusion of the appropriate content and length of kenaf fibres. However, more studies are necessary to understand the overall impact of kenaf fibres on the compressive strength and durability properties of cementitious composites.
|
Al-Ghazali Noor Abbas,
Farah Nora Aznieta Abdul Aziz,
Noor Azline Mohd Nasir,
Khalina Abdan,
Mohd Nurazzi Norizan,
|
0 |
Download Full Paper |
0 |
Cracking Diagnosis in Fiber-Reinforced Concrete with Synthetic Fibers Using Piezoelectric Transducers
Show Abstract
Abstract
The addition of short fibers in concrete mass offers a composite material with advanced properties, and fiber-reinforced concrete (FRC) is a promising alternative in civil engineering applications. Recently, structural health monitoring (SHM) and damage diagnosis of FRC has received increasing attention. In this work, the effectiveness of a wireless SHM system to detect damage due to cracking is addressed in FRC with synthetic fibers under compressive repeated load. In FRC structural members, cracking propagates in small and thin cracks due to the presence of the dispersed fibers and, therefore, the challenge of damage detection is increasing. An experimental investigation
on standard 150 mm cubes made of FRC is applied at specific and loading levels where the cracks probably developed in the inner part of the specimens, whereas no visible cracks appeared on their surface. A network of small PZT patches, mounted to the surface of the FRC specimen, provides dual-sensing function. The remotely controlled monitoring system vibrates the PZT patches, acting as actuators by an amplified harmonic excitation voltage. Simultaneously, it monitors the signal of the same PZTs acting as sensors and, after processing the voltage frequency response of the PZTs, it transmits them wirelessly and in real time. FRC cracking due to repeated loading ad various compressive stress levels induces change in the mechanical impedance, causing a corresponding change on the signal of each PZT. The influence of the added synthetic fibers on the compressive behavior and the damage-detection procedure is examined and discussed. In addition, the effectiveness of the proposed damage-diagnosis approach for the prognosis of final cracking performance and failure is investigated. The objectives of the study also include the development of a reliable quantitative assessment of damage using the statistical index values at various points of PZT measurements.
|
Maristella E. Voutetaki,
Maria C. Naoum,
Nikos A. Papadopoulos,
Constantin E. Chalioris,
|
0 |
Download Full Paper |
0 |
Propagation and Transformation of Vortexes in Linear and Nonlinear Radio-Photon Systems
Show Abstract
Abstract
The article is devoted to issues related to the propagation and transformation of vortexes in the optical range of frequency. Within the framework of the traditional and modified model of slowly varying envelope approximation (SVEA), the process of converting vortex beams of the optical domain into vortex beams of the terahertz radio range based on nonlinear generation of a difference frequency in a medium with a second-order susceptibility is considered. The modified SVEA splits a slowly varying amplitude into two factors, which makes it possible to more accurately describe the three-wave mixing process. The theoretical substantiation of the rule of vortex beams topological
charges conversion is given—the topological charge of the output radio-vortex beam is equal to the difference between the topological charges of the input optical vortex beams. A numerical simulation model of the processes under consideration has been implemented and analyzed.
|
Valery H. Bagmanov,
Albert Kh. Sultanov,
Ivan K. Meshkov,
Azat R. Gizatulin,
Raoul R. Nigmatullin,
Airat Zh. Sakhabutdinov,
|
0 |
Download Full Paper |
0 |
Characterization of Tensile Properties of Cola lepidota Fibers
Show Abstract
Abstract
Plant fibers are being increasingly explored for their use in engineering polymers and composites, and many works have described their properties, especially for flax and hemp fibers. Nevertheless, the availability of plant fibers varies according to the geographical location on the planet. This study presents the first work on the mechanical properties of a tropical fiber extracted from the bast of Cola lepidota (CL) plant. After a debarking step, CL fibers were extracted manually by wet-retting. The tensile properties are first identified experimentally at the fibers scale, and the analysis of the results shows the great influence of the cross-section parameters (diameter, intrinsic porosities) on these properties. Tensile properties of CL fibers are also predicted by the impregnated fiber bundle test (IFBT). At this scale of bundles, a hackling step, which reduces shives and contributes to the parallelization of the fibers within bundles, improves tensile properties predicted by IFBT. The comparison with the properties of plant fibers given in the literature shows that CL fibers have tensile properties in the same range as kenaf, flax or hemp fibers.
|
Damien Soulat,
Ahmad Rashed Labanieh,
Manuela Ferreira,
Rémy Legrand Ndoumou,
Jean Atangana Ateba,
Lucien Mevaa,
|
0 |
Download Full Paper |
0 |
Application of Activated Carbon Adsorbents Prepared from Prickly Pear Fruit Seeds and a Conductive Polymer Matrix to Remove Congo Red from Aqueous Solutions
Show Abstract
Abstract
The present work was aimed to evaluate the adsorption properties of activated carbons based on prickly pear seeds (PPS) and conductive polymer matrix based on polyaniline (PANI) for the removal of anionic Congo red (CR) dye from aqueous solutions. The adsorbent was prepared by polymerization of aniline in the presence of activated PPS by phosphoric acid and sodium hydroxide. The samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR),thermogravimetric analysis (TGA) and the Brunauer–Emmett–Teller (BET) methods. The adsorption kinetics were studied using UV-visible (UV/Vis) spectroscopy. The characterization data suggest that the adsorption of the Congo red dye is enhanced because PANI chain molecules, which are especially accountable for removal through π–π interaction and H–bonding with the CR, are adsorbed/tethered onto the acid-activated PPS (PPSH), and thus surmount the mass transfer limitation by being best exposed to the CR-adsorbed molecule. The adsorption kinetics follows the pseudo-second order process. The correlation coefficients (R2) for Langmuir, Freundlich and Tempkin showed that the adsorption values obey Freundlich and Tempkin isotherm models. Moreover, the isotherm was most
accurately described by the Freundlich model, and the maximum removal percentage was calculated to be 91.14% under optimized conditions of pH 6.6, 1 g/L of adsorbent dosage, and an initial CR dye concentration of 20 mg·L
−1. Importantly, the hybrid adsorbent exhibited the highest adsorption capacity (80.15%) after five cycles of the adsorption–desorption process. Thermodynamic parameters, such as entropy changes, enthalpy changes and Gibbs free energy, were also evaluated. These results indicated that the PANI matrix can generally be better utilized for the removal of Congo red dye when appropriately dispersed on the surface of suitable support materials. These results provide a new direction to promote the separable adsorbents with increasing performance for adsorption of
dye impurities from wastewater.
|
Saadia Lahreche,
M’hamed Kaid,
Abdelghani Benyoucef,
Imane Moulefera,
Abdelkader El Kebir,
Lilia Sabantina,
|
0 |
Download Full Paper |
0 |
Bond between Fibre-Reinforced Polymer Tubes and Sea Water Sea Sand Concrete: Mechanisms and Effective Parameters: Critical Overview and Discussion
Show Abstract
Abstract
Using fibre-reinforced polymers (FRP) in construction avoids corrosion issues associated with the use of traditional steel reinforcement, while seawater and sea sand concrete (SWSSC) reduces environmental issues and resource shortages caused by the production of traditional concrete. The paper gives an overview of the current research on the bond performance between FRP tube and concrete with particular focus on SWSSC. The review follows a thematic broad-to-narrow approach. It reflects on the current research around the significance and application of FRP and SWSSC and discusses important issues around the bond strength and cyclic behaviour of tubular composites. A
review of recent studies of bond strength between FRP and concrete and steel and concrete under static or cyclic loading using pushout tests is presented. In addition, the influence of different parameters on the pushout test results are summarised. Finally, recommendations for future studies are proposed.
|
Johanna Dorothea Luck,
Ali Rajabipour,
Milad Bazli,
|
0 |
Download Full Paper |
0 |
Concrete Reinforced by Hybrid Mix of Short Fibers under Bending
Show Abstract
Abstract
In the present study, the mechanical behavior of Fiber-Reinforced Concrete (FRC) beams was studied under bending until rupture. Each beam was reinforced with a hybrid mix of short fibers randomly distributed in its volume. Concrete beams with three different fiber combinations were investigated, namely, beams reinforced with (1) a homogeneously distributed mix of short polypropylene fibers (PP) and steel fibers, (2) PP fibers and Alkali Resistant Glass (ARG) fibers, and (3) PP and composite fibers (CF). The amount of short PP fibers was the same in all FRCs. The
investigation focused on the fracture mechanisms and the load-bearing capacity of FRC beams with the developing macro cracks. In total, 12 FRC composite prismatic specimens were casted and tested in four-point bending experiments (4PBT). The current load value versus the Crack Mouth Opening Displacement (CMOD) for all FRCs was analyzed. The crack opening relationship and the influence of fibers on the fracture energy and flexural tensile strength were determined. Rupture surfaces of all samples were investigated using an optical microscope.
|
Vitalijs Lusis,
Andrejs Krasnikovs,
Krishna Kiran Annamaneni,
|
0 |
Download Full Paper |
0 |
Mechanical, Durability and Corrosion Properties of Basalt Fiber Concrete
Show Abstract
Abstract
The effect of using basalt fibers on the fresh, mechanical, durability, and corrosion properties of reinforced concrete was investigated in this study. The study was performed using different basalt fiber volume fractions of 0.15%, 0.30%, 0.45%, and 0.50%, while two different water/cement (w/c) ratios of 0.35 and 0.40 were utilized. The results were compared to conventional concrete (PC) as well as steel fiber concrete (SFC) with 0.30% and 0.50% steel fibers volume fractions. An extensive experimental program of 336 samples was conducted in four stages as follows: testing for fresh properties included slump and unit weight tests; mechanical properties testing included compressive
strength tests, split tensile strength tests, flexural strength tests, and average residual strength tests; durability testing included unrestrained shrinkage and surface resistivity tests; and a Rapid Macrocell corrosion evaluation test for corrosion properties. The test results showed that the use of basalt fibers reduces slump values as the fiber volume fraction increases; however, with the use of the appropriate amount of High Range Water Admixture (HRWA), target slump values can be achieved. Moreover, a considerable improvement in the compressive, tensile, flexural, average residual strength and durability properties was achieved in case of using basalt fibers. On the other hand, corrosion rates increased with the increase in fiber volumes. However, it can be concluded that utilizing a 0.30% fibers volume fraction is the optimum ratio with an overall acceptable performance with respect to mechanical and corrosion properties.
|
Mohamed T. Elshazli,
Kevin Ramirez,
Ahmed Ibrahim,
Mohamed Badran,
|
0 |
Download Full Paper |
0 |